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Marginal Stability and Stabilization in the Numerical 
Integration of Ordinary Differential Equations 

By H. Brunner* 

Abstract. Strongly stable and consistent multistep methods with maximum order are 
subject to marginal (or weak) stability. In this paper we introduce modified multistep 
methods whose coefficients depend linearly on the stepsize h and a parameter L in such a 
way that the order of the original method is not decreased. By choosing L in a suitable 
manner (depending essentially on f,(x, y) of the differential equation y' = f(x, y) and on the 
growth parameters of the multistep method), marginal stability can be eliminated. 

1. Introduction. In [3]. G. Dahlquist introduced a class of recurrence relations 
of the form 

k ~~~~~~k 
(1.1) E >~~aYn+4r = h , 0vnI" 4 I- (n = O, 1,**) 

where the coefficients a,, 3, (v = 0, 1, k) are real and independent of n, ak #- 0, 

fm = f(xm, ) Yr), Xm = a + mh, h > 0. These relations, usually called linear k-step 
methods, are used to generate approximations to the exact solution of the initial- 
value problem 

(1.2) Y' = f(x y)) y(a) = s, a < x < b ( ' = d/dx) 

at the points x = xm, xm E [a, b]. 
We assume that the function f(x, y) be defined and continuous in the strip S: 

a ? x < b, jyI < O. In S, it shall also satisfy a Lipschitz condition with respect 
to the variable y. 

In the following we shall denote the exact solution of (1.2) at x = xm by y(xm), 

whereas ym means the approximation to y(xm) given by (1.1) and a certain set of initial 
values yo, , YA;-i 

The characteristic polynomials associated with (1.1) are defined by 
k 

V=o 

k 

(1.4) a-(z)- E O'Z". 
The k-step method (1.1) will be referred to as the method (p, a). 

Definition. Let 
k 

C[y(x): h]-- > (a,y(x + Ph) - hO3,y'(x + Ph)). 
p =0 
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Then the largest integer p, for which 

Max I.C[y(x.); h]I = O(hp+1) 
xn E [a, b1 

for all solutions of (1.2) having continuous derivatives of sufficiently high order, is 
called the order of the method (p, ). 

Definition. The method (p, a) is called (strongly) stable if no zero of p(z) has 
modulus exceeding one and if the zeros on the unit circle are simple. 

The method (p, oF) is called consistent if 

(1.5) p(l) = 0, p'(l) = (1). 

It is known [3, p. 51] that the order of a stable and consistent k-step method cannot 
exceed p = k + 2. A method (p, a) has the maximum order p = k + 2 if its char- 
acteristic polynomials satisfy the following conditions: 

(i) The degree k of p(z) is an even number (k > 2). 
(ii) The zeros zj (j = 1, , k) of p(z) have all modulus one. 

(iii) If 

p(z) (logz)_ = Zc (z - I)' (log I = 0), 
v=a 

then 
k 

O(z) cvE -(z - I)' 
v =O 

Definition. A stable and consistent k-step method (p, o-) with maximum order 
p = k + 2 is called an optimal method. 

Throughout this paper, the method (p, a) is assumed to be an optimal method. 
It is well known that optimal k-step methods are subject to marginal (or weak) 

stability (see, for instance, [5, p. 242]). The main reason for this behavior is that 
some of the growth parameters 

(1.6)z (zi) 1j = 1, *.., k (p(z,) = 0), 

(which are known to be real, [4, p. 40]) are negative. In particular, the growth param- 
eter associated with the zero z = 1 of p(z) satisfies the inequality X2' < - 3, where 
equality is reached only for k = 2. 

In [1], the author has derived a class of modified k-step methods. These methods 
are given by the characteristic polynomials 

k hL 
(1.7) R(w, hL) = t = p(w) + - p*(w) 

and 
k h 

(1.8) S(w, hL) = vw = (w) + 2Omf*(w). 
V=O 

Here 
k 

(1 .9) p*(w)- E (w - 1).p'(w) 
v=O 
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and 
k k 

(1.10) *(w)- E q, - E = -W 
'=0 -=0 

with 

(1.11) p*(w).(log wY' = >3 - (w - 1) (log 1 = 0). 
v=0 

The nonnegative parameter L is called the parameter of stabilization. Obviously 
the coefficients of the polynomials R(w, hL) and S(w, hL) are linear functions of hL, 
and we have R(w, 0) = p(w), S(w, 0) = v(w). It has been shown [1, p. 442] that the 
modified k-step method (R, S) has order p = k + 2, and for the case where f(x, y) = 
Ay (A < 0) the author has demonstrated that marginal stability can be eliminated 
(without decreasing the order of the k-step method) by choosing the parameter 
L in a suitable manner depending essentially on the growth parameters of the original 
k-step method and on the constant A. 

The purpose of this paper is to extend the results of [1] to nonlinear ordinary 
differential equations of order one. In the following section some important properties 
of the polynomials R(w, hL) and S(w, hL) are presented. In Section 3 the initial-value 
problem (1.2) is solved by the modified method (R, S), and an asymptotic relation 
for the discretization error is found (asymptotic in the sense h -+0, nh fixed, L fixed). 
From this result conditions for the parameter L will be derived in order to eliminate 
marginal stability with respect to the given differential equation. The last section of 
the paper contains some numerical illustrations. 

2. Properties of the Polynomials R(w, hL) and S(w, hL). 
LEMMA 1. The k-step method (R, S) defined by (1.7) and (1.8) is consistent, i.e., 

(2.1) R(1, hL) = 0 

and 

(2.2) R'(1, hL) = S(1, hL) ( ' d/dw). 

The proof is obvious and therefore omitted. 
LEMMA 2. There exists a Q > 0 such that the zeros wi = w3(hL) (J- 1, , k) 

of R(w, hL) have multiplicity one for all hL E [0, Q). 
Proof. From (1.7) and (1.9) we have 

R(w, hL) = E a, + P) W 

and 
k 

p(w) = R(w, 0) = E w 
V=0 

Since the zeros of p(w) are simple by hypothesis, the result follows from the fact 
that the zeros of the polynomial R(w, hL) are continuous functions of hL (see also 
[7, p. 3]). 

LEMMA 3. For hL > 0 and j = 2, * , k, the zeros w3 = wi (hL) of R(w, hL) 
are contained in the interior of the unit circle, whereas the zero w, = 1 is independent 
of hL. 
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Proof. By (1.7), the zeros of R(w, hL) are given by the zeros of 

p(w) + 2 (w- l)p'(w) = (w - - 1 + - E 2 1 - 1 2 i w i 

where p(z;) = O andjzJ = 1,j = 1, * ,k. Let 

F(w) 1 +hL k 1 
w - 1 2 j=1 w -Zi 

For hL > 0, it follows [7, p. 22] that each zero of F(w) lies in the convex hull H of 
the points 1, z1, * * * , Zk. No zero lies on the boundary of H except the zero w1 = 1. 
This completes the proof. 

Definition. The numbers 

(2.3) i - S'(w', hL) ' R(w,, hL) = -, d (j = 1, , k) 

are called the growth parameters of the modified k-step method (R, S). 
It follows from (1.6) that 

(2.4) I= = 1. 

Furthermore, we have $4 $ 0, and, from (1.7), (1.8), and (1.6), 

(2.5) Xi = Xi + O(h), O? hL < Q, j = 2, * * *, k. 

Definition. Let the zeros of R(w, hL) be denoted by wi (j = 1, *., k). Then 
define: 

k 

(2.6) R '(w, hL) R(wwi, hL) j i WV, 
V=O 

k 

(2.7) SC?) (w, hL) = '1 S(ww;, hL) _M. wj 
V =o 

with 

ap) = Vw and ,'i = f.w (j = 1, k; = 0, ,k). 

LEMMA 4. The k-step methods defined by the polynomials R'i'(w, hL) and S`'i(w, hL) 
are consistent, i.e., 

R(')(1, hL) = o 

aind 

1R (w,Uh) I 
________- 

hL) = S')(1, hL) (j = 1, 
* * , k). dw IW== 

For j = 1, we have w, = 1 and ihus the statement of Lemma 1. 
The proof is similar to that of Lemma 1 and will again be omitted. 
Definition. Let the values so, si, * * *, Sk-, be functions of h, defined for all values 

of h sufficiently close to zero, such that 

lim s-(h) = y(a) = s (m = O, k 1). 
h--O 
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Let Iyn} be the solution of the difference equation 

k k 

(2.8) S?IP*Y.+ = h Z 53'fn +t n = 0, 1, 

defined by the initial values Ym = s,,, (m = 0, * , k - 1). Then the k-step method 
(R, S) is said to be convergent if 

Max ly - y(x)1 0 as h -* 0 (L fixed). 
XnEi1 a,bJ 

Here, y(x) denotes the exact solution of (1.2). 
THEOREM 1. The k-step methods (R ', (J = 1, *, k) defined by (2.6) and (2.7) 

are convergent. For j = 1, we get as a special case the convergence of the k-step method 
(R, S). 

Proof. The proof is essentially the same as the one for the classical result which 
says that a stable and consistent k-step method is convergent (see [5, Theorem 5.10]), 
except for one important detail: for hL > 0 and j = 2, - - *, k, the k-step methods 
(R"'i, S'i)) are no longer strongly stable (in the sense defined above). Since the zeros 
of R ''(w, hL) are given by 

V = wm w, (m = 1, k), 

we have I V}j i > 1 for some values of m. But, from [1, p. 440], 

(2.9) wi = zI + h. 1 i + 0(h2)) (i = 1, , 

where z; = exp (i sp,), we find for n -- c, nh = X- a ? b - a, L fixed: 

twrn w7-1I = exp ( (xn - a) (cos (pm - COspj)) + 0(h). 

With these results the proof of Theorem 1 is easily carried out along the lines of the 
classical proof mentioned above. 

3. Elimination of Marginal Stability. In (1.2), let f,(x, y(x)) E C[a, b], and 
assume that the exact solution y(x) be of class Ck+4[a, b] (where k denotes the degree 
of the polynomial R(w, hL)). Without loss of generality let a = 0. The difference 
operator ? associated with the k-step method (R, S) is given by 

?[y(x); hL]-- x (&oey(x + vh) - hf,3y'(x + vh)). 
v=O 

Let 

hL 
2 

where, for all y(x) C Ck+4[a, b]: 
k 

C[y(x); h] = (aoey(x + vh) - hf3y'(x + vh)) = Ck+3.y(I3)( ).hI?3 + 0(hk+), 
v=o 
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and 
k 

Q*[y(x); h]- (pEy(x + vh) - hq^y'(x + vh)) = C*+2.y(k?2)(x).hk2 + O(hk?3), 
YV=O 

since ? has by hypothesis maximum order p = k + 2, whereas C* has order p* > 
k + 1 (see [5, p. 226], [1, p. 442]). Hence, 

Z[y(x); hL] = -H(x, L).hk?3 + O(h k4), 

where 

-H(x, L) = Ck3 (X) + k+2 (X) 

The constants Ck+3 and C*+2 depend on the coefficients of p(w), 0(w), and p*(w), 
v*(w), respectively, but are independent of hL and y(x) [5, p. 221], [1, p. 442]. 

Subtract, now, the expression for Z[y(x); hL] from the difference equation (2.8) 
to get 

k k 

(3.1) Ej ,e,+^ - h E j7 ,gn+p-en+ = H(xn, L)hk+3 + h O(e2+?) + O(hk+4), 
V=O v=O 

where em = Yn - y(x(m) denotes the truncation error at the point x = x,, and where 
g(x) = f (x, y(x)), gm = g(xm). 

Suppose that the initial values for { en } are of the form 

(3.2) e- 3 i(h) = 0 (hq) q ~_! 1, j = 0, * k* k- 1. 

It then follows [6, Lemma 3.2] that the values en satisfy the relation 

en = O(h r), r = min (k + 2, q), xn E [0, b]. 

Hence, (3.1) becomes 

k k 

(3.3) , &yen+ - h E Z ,,gn+ven+v = H(xn, L)hk+3 + O(hk+4) + O(h2r+l). 
v=O V=o 

The solution of (3.3) can be written as the sum of the solution of the homogeneous 
equation 

(3.4) E (&o, - h gn + ).en+ v = 0 
v =O 

with initial values (3.2), and the solution of the inhomogeneous equation (3.3) with 
initial values being equal to zero. It can be shown [5, p. 250] that the solution of the 
inhomogeneous difference equation does not depend on the growth parameters Xi of 
the k-step method (R, S), and it, therefore, has no influence on the stability of the 
general solution { en} of (3.3). For this reason, we shall only consider the homogeneous 
equation (3.4). Its solution shall be represented in the form 

(3.5) en= EA en 
ji=1 
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where the sequences Ie i }, j = 1, * * *, k, form a fundamental system of solutions of 
(3.4) at the point n = 0. In order to construct such a fundamental system, consider 
the differential equation z'(x) = gO *z(x). If we apply the method (R. S) to solve this 
equation, we get a linear difference equation with constant coefficients, namely, 

k 

E (&, - hgofv3)zn+ = 0. 
V=0 

Let v; (j 1, , k) be the solutions of the equation 

R(w, hL) - hgo * S(w, hL) = 0. 

According to Lemma 2, these roots have multiplicity one whenever h is sufficiently 
close to zero, and, thus, the determinant 

Ic-i 
1 v1 * ** V1 

WO- .. V 

wo= 
k-i 

1 Vk ... Vk 

is different from zero for such values of h. If we define the sequences { en'1 } by setting 

e(') = v , m = O, ... k - 1, j = 1, --- )ks 

then these sequences form a fundamental system of solutions of (3.4) at n = 0, and 
we may represent the solution of (3.4) in the form (3.5) (see also [5, p. 21 11. 

In order to establish asymptotic relations for the expressions ei', let 

(3.6) e * W 

whereR(wi, hL) = 0, j = 1, ,k. Form = 0,. - - k -1, wehave 

= 1 + 0(h). 

It follows from the definition of the sequences { e) } that the sequences { g } satisfy 
(3.4), i.e., 

k 

(3.7) (&(i) - =0,8)), = 0, 
P0 

since wj 0 0 near h = 0. The coefficients a(i), ~,") are defined by (2.6) and (2.7). 
By Lemma 4 the k-step methods (R('), S")) are consistent, and by Theorem 1 they 

are convergent. If we now solve the initial-value problem 

d (s_ i. g(x)*)(x), (x U) () = 1, 
dx 

by the method (R(), S`')), there results again difference equation (3.7). It follows [5, 
p. 248] that 

n= Sn (xn) + 0(h), j= 1, *.., k, x. E [O, b]. 

Hence, we find from (3.6) 

e(i = n + 0(h), j = 1, *.., k. 
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By (2.9), we get for n -+ o, nh = x", L fixed, using the explicit expressions for the 
functions ('i'(x), 

eli) = exp (inv;) exp (2L Z i X + Xi g(x) dx) + O(h), ( =1, * k). 

With these relations, (3.5) takes the final form 

IL g(x)z e= . Ai exp (inp;). exp i xn + X. g(x) dx + 0(h), xn E [0, bj. 

Here we have used (2.5). Let 

r1(x) exp (inp3) exp (2 i x + X3i. g(t) dt) ( = 1, k). 

Following the terminology of Hull and Newbery [8], we introduce the notions of 
relative and absolute stability: 

Definition. The k-step method (R, S) is called relatively stable (in the asymptotic 
sense: h 0, nh = x., L fixed) with respect to the initial-value problem (1.2) if 
forallx E[0,b]andallj = 2, * ,k: 

frj(x.)j < jr1(xJjj 

Definition. The k-step method (R, S) is called absolutely stable (in the asymptotic 
sense stated above) with respect to the initial-value problem (1.2) if for all x. EE [0, b] 
and all j = 2,* k: 

1ri(x,Jj < 1. 

From the fact that the growth parameters 'X of the k-step method (p, a) are real 
[4, p. 40], we obtain, without difficulty, the following results: 

THEOREM 2. The k-step method (R, S) is relatively stable (in the asymptotic sense) 
with respect to the initial-value problem (1.2) if the parameter L satisfies the inequality 

(X,- 1)_f g(x) dx 
(3.8) L > 2. Max 

j=2,..,k; XnE(O,b (1 - Cos (Pi) X. 

THEOREM 3. The k-step method (R, S) is absolutely stable (in the asymptotic sense) 
with respect to the initial-value problem (1.2) if the parameter L satisfies the inequality 

xi. J g(x) dx 

(3.9) L > 2 
2 

Max ? 
j-2, ..,k; znE(O,b (1 - osi).xn 

4. Optimal k-Step Methods of Open Type. Let p(z) be the first characteristic 
polynomial of an optimal k-step method as given by (1.3). If we set 

k-1 

0a0(z)- E cp(z - 1)^, 
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where 

p(z)W(1ogz)- = E - (_) (log 1 = 0), 

then the resulting k-step method is a method of open type and is known to have 
order p = k [3, p. 52]. Such a method has always a number of negative growth param- 
eters [4, p. 42] and is therefore subject to marginal stability. 

It is obvious that the arguments presented in Section 2 and Section 3 are easily 
modified for the case of an optimal k-step method of open type as described above. 
Except for the values of the growth parameters X,, the two theorems stated at the 
end of Section 3 remain valid if (R, S) is now an open method given by (1.7) and 

S(w, hL) = ao(w) + 2 a*(w), 

where 
k-I 

a*(w) = z VyP(w- - 

V:30 

(see (1.10) and (1.11)). 
In the following section a particular k-step method of open type, the modified 

midpoint rule, will be used to solve a nonlinear differential equation. Other methods 
(for k = 4 and k = 6) are contained in [2, pp. 67-75]. 

5. Numerical Illustrations. 
I. Consider the simple initial-value problem 

(5.1) y' = lOx-lOxy, y(0)=0, 0 _ x _ 3. 

Its exact solution is y(x) = - exp (-5x2). For the numerical integration of (4.1) 
we use the method of Milne-Simpson and its modification [1]: 

Yn+2'(l + hL) - hL-yn+, -Yn 

=L. [(4 + 5hL).f +2 + (16 + 8hL).fn+, + (4 - hL).fn] 12 

(n-=0, 1, * 

The growth parameters of the classical method (L = 0) are 

XI = 1, X2 = 

and the inequality for absolute stability becomes (for the interval indicated above) 
L > 5. In order to have also relative stability the parameter L must satisfy L > 20. 

The following table contains some numerical values corresponding to the stepsize 
h = 0.02. The two initial values for Y. were exact, i.e., yO = 1 andy' = 1 - exp (- 5h2). 
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All computations were performed on the IBM 360/50 of the Dalhousie University 
Computer Centre. 

L= 0 L= 10 L= 20 
Xn IO'. enl 109 * en9e 10 * en 

1.20 29 -38 -73 
1.22 -21 -33 -65 
1.24 33 -29 -57 
1.26 -26 -25 -50 
1.28 38 -22 -43 
1.30 -33 -18 -37 

1.50 -91 -2 -6 
1.52 103 -2 -4 
1.54 -112 -2 -4 
1.56 125 -1 -3 
1.58 -138 -1 -2 
1.60 154 -1 -2 

2.90 -2212811 0 0 
2.92 2672923 0 0 
2.94 -3232706 0 0 

II. The nonlinear problem 

y -2xy, y(O) 1, 0 < x _ I 0, 

whose exact solution is 

y(x) = 17(1 + X2), 

was solved numerically by the midpoint rule and its modification [2]: 

Y.+2(l + hL) - hL-ys+1 -yn = h-[(4 + 3hL).f.?1 - hL.fij (n 0, 1, ). 

The growth parameters of the classical method are 

X1 = 1, X2 = -1, 

and a simple calculation yields the inequalities L > 1.609 for absolute stability, and 
L > 3.219 for relative stability (for the interval 0 < x < 10). The initial values for 
Jy, } were yo = 1 (exact initial value), y, exact to eight places after the decimal point. 
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L= 0 L= 1.5 L= 3.0 
Xn A(X.) en en, en 

1.0 0.5000000 -0.0019152 -0.0017987 -0.0018697 
1.1 0.4524887 -0.0007246 -0.0012294 -0.0014397 
1.2 0.4098361 -0.0015512 -0.0011978 -0.0011960 
1.3 0.3717472 0.0000025 -0.0006647 -0.0008499 

5.0 0.0384615 -0.0741068 -0.0000639 0.0000471 
5.1 0.0370233 0.0438333 0.0001428 0.0000455 
5.2 0.0356633 -0.0846457 -0.0000562 0.0000427 
5.3 0.0343761 0.0414900 0.0001274 0.0000411 

7.5 0.0174672 -0.1884251 0.0000318 0.0000153 
7.6 0.0170184 -0.2491781 -0.0000029 0.0000147 
7.7 0.0165865 -0.3513947 0.0000280 0.0000141 
7.8 0.0161708 -0.5935879 -0.0000014 0.0000137 

9.7 0.0105163 ... 0.0000087 0.0000068 
9.8 0.0103050 ... 0.0000038 0.0000066 
9.9 0.0100000 ... 0.0000079 0.0000064 

10.0 0.0099010 ... 0.0000039 0.0000062 

Other modified methods (for k = 4 and k = 6; [1], [2]) show a very similar error 
behavior. 
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